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1. INTRODUCTION 

Using knowledge and theories from the sciences and applying it to real-life situations in order 

to help with problem solving has always been intriguing to me; this is an important aspect of 

being an inquirer, one of the IB learner profile traits. For example, in HL Chemistry, we carried 

out a lab experiment involving titrations in order to calculate the mass of calcium carbonate 

present in a sample of eggshell. I was able to use my existing knowledge of reactions and mole 

calculations in order to acquire new information which is of potential significance to the 

industry; studies have suggested that calcium carbonate extracted from eggshell is a good 

pharmaceutical excipient that can be used in a variety of products (Murakami et al., 2007).  

Similarly, I wanted to employ my mathematical knowledge to do something which I found 

interesting and provides useful information in contextual real-life situations.   

 

As a child, when I was living in Egypt, I remember helping my grandmother in taking care of 

the farm animals. She would always ask me to go count how many eggs the chicken have laid 

and bring some to her. While doing so, I would observe the eggs and ponder over their elegant 

shape, and then talk about it with her. I was fascinated by how myriad complex shapes were 

present in nature, sparking an interest within me. As I developed a passion for mathematics, I 

started thinking about such phenomena from a mathematical point of view, and so I decided to 

model a chicken egg in this exploration, viewing the problem from different perspectives and 

using different approaches. This investigation aims to find suitable mathematical models for a 

chicken egg and comparing them, and further, to calculate the volume and surface area of the 

egg from those models. This topic is relevant and has wider implications; the volume is 

indicative of the amount of yolk in the egg, while the surface area is indicative of the amount 

of eggshell present. The egg I modelled was randomly taken from the kitchen and is shown in 

Figure 1.
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2. MODELLING THE EGG 

In order to assist in finding a good model which serves as a good fit for the egg, it was cropped 

from Figure 1 using Abode Photoshop and then superimposed onto the graphing software 

Desmos, as illustrated in Figure 2. Furthermore, I needed a way to determine how the egg 

should be scaled, as that would have resulted in an accurate calculation for the volume and 

surface area, rather than providing values which are only proportional to the true values. As 

such, one dimension of the egg had to be measured. Deciding to measure the length, the egg 

was boiled and cut in half along its vertical axis of symmetry, i.e. the middle. I then used a 

15cm ruler to find the distance between the top and the bottom and that was found to be 5.4cm, 

represented by the red line in Figure 2. It is important to note however that the axis of symmetry 

was judged subjectively; in other words, I was not able to accurately specify at which point to 

cut such that this would result in the greatest length. Furthermore, the precision of the ruler 

was 0.1cm, which means that there was an uncertainty of ±0.1𝑐𝑚 in the measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Superimposing a cropped version 

of the egg (length = 5.4𝑐𝑚) into Desmos. 
Figure 1: Chicken egg that is being modelled. 
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2.1 Method A: Modifying the Ellipse Equation 

The shape of an egg is somewhat similar to that of an ellipse, therefore it could be used as a 

good starting point. An ellipse has two different “radii”, defined as the major axis and the minor 

axis. The equation of a general ellipse is as follows: 

𝑥2

𝑟𝑥2
+
𝑦2

𝑟𝑦2
= 1 , (1) 

where ±𝑟𝑥 and ±𝑟𝑦 represent the 𝑥 and 𝑦 axes-intercepts respectively. They could also be 

thought of as the horizontal and vertical radii. The one with the greater magnitude represents 

the major axis, while the other is the minor axis. The magnitude of either of the axes is simply 

twice the value of 𝑟𝑥 or 𝑟𝑦, i.e. the distance between the two vertical or horizontal intercepts. In 

order to simplify upcoming calculations, the denominators in (1) will be replaced with 𝑎 and 

𝑏, as follows: 

𝑥2

𝑎
+
𝑦2

𝑏
= 1 (2) 

By composing (2) with a function, either in terms of 𝑥 or 𝑦, the ellipse could be modified to 

further resemble the shape of an egg. This function could take any form, but let us consider the 

simple, judicious case in which we add a term ‘𝑐𝑦’ to the denominator: 

𝑥2

𝑎
+

𝑦2

𝑏 + 𝑐𝑦
= 1,where c > 0 (3) 

Here, 𝑐 is another parameter which—in colloquial terms—‘controls’ the shape of the ellipse 

above and below the 𝑥-axis, such that it stops looking like an ellipse and more like an egg. 

Figure 3 highlights this difference and shows how (3) resembles an egg much better than (2) 

does. We can understand why this works by considering the symmetry of the ellipse. The 

denominator is a constant value, 𝑏, giving the same vertical radius above and below the 𝑥-axis; 

however, upon adding another term to the denominator which is dependent on 𝑦, the symmetry 

changes, altering the shape. Below the 𝑥-axis, since the 𝑦 values are negative, the magnitude 
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of the term ‘𝑏 + 𝑐𝑦’ would decrease (when 𝑐 is positive). In contrast, the magnitude would 

increase above the 𝑥-axis because the 𝑦 values are positive. As such, this asymmetry results in 

different distances from the origin for different points on the curve. The larger the value of 𝑐, 

the more drastic this asymmetry is above and below the 𝑥-axis. Negative values of 𝑐 would 

simply rotate the curve by 180°, and therefore the restriction on 𝑐 was applied since the egg 

being modelled in Figure 2 contains the “smaller radius” below the 𝑥-axis.    

 

 

 

 

 

 

 

 

Now, we can try applying this general model to our egg, in which case we will need to find 

appropriate values for our three parameters 𝑎, 𝑏 and 𝑐. In order to do this, a system of at least 

three linear equations will be needed, and hence at least three co-ordinates. The axes intercepts 

can be used as co-ordinates as that would simplify the calculation process, as these co-ordinates 

will help eliminate the 𝑥 or 𝑦 part of the equation. Looking back at Figure 2, we can see that 

the egg intercepts the 𝑦-axis at (0, 3.2) and (0, –2.2), and the 𝑥-axis at (±2.1, 0). Substituting 

these values into (3) yields the following system of equations: 

𝑏 + 3.2𝑐 = 3.22 (4) 

𝑏 − 2.2𝑐 = 2.22 (5) 

2.12

𝑎
= 1 (6) 

We can subtract (5) from (4) to give us: 

Figure 3: Graphical representation of (3) in blue, and (2) in red. 
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5.4𝑐 = 5.4 

∴ 𝑐 = 1 

Substituting this value back into (4) or (5) gives us 𝑏 = 7.04; and from (6), 𝑎 = 4.41. 

Therefore, according to this model, the equation of this specific egg can be quoted as: 

𝑥2

4.41
+

𝑦2

7.04 + 𝑦
= 1 (7) 

 

As can be seen from Figure 4, the 

modified ellipse equation does a good 

job at representing the general shape of 

the egg and, as expected, the equation 

passes through all the axes intercepts. It 

also seems to have similar curvature to 

that of the egg above the 𝑥-axis; 

however, upon closer observation, this 

fails to be the case below the 𝑥-axis, as 

the curve seems to ‘extend’ wider 

beyond the curvature of the egg. Of 

course, different co-ordinates on the egg 

could have been used to calculate the 

coefficients, which could have resulted in a slightly different shape, but that still would have 

not overlapped perfectly with the egg. This means that the flaw is likely to be within the model 

itself. Perhaps instead of adding the term ‘c𝑦’ in the denominator, composing (2) with a 

different function may have given rise to a more accurate fit, for example, 𝑒−𝑐𝑦. As such, an 

investigation into which function should be composed to provide the best fit could be worth 

Figure 4: Graphical representation of (7) showing how it 

models the egg. 
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doing, although that is not vital, since the current function is a decent representation that only 

minimally strays away from the ‘perfect’ shape. 

 

2.2 Method B: Using Polynomials 

Note that in this section, to help with modelling, the egg in Figure 2 will be rotated 90° 

clockwise such that it is placed horizontally along the 𝑥-axis. This method involves analytically 

finding polynomial equations that can model one half of the egg, and then reflecting them in 

the 𝑥-axis to obtain the equations for the other half, assuming that the egg is symmetrical on 

both sides. These polynomial functions can be found using the Lagrange interpolation formula, 

which states that for a unique polynomial of degree 𝑛, (𝑛 + 1) data points are required to find 

a ‘best’ fit. The formula is given as follows for a polynomial 𝑃(𝑥): 

𝑃(𝑥) = ∑
(𝑥 − 𝑥1). . . (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1). . . (𝑥 − 𝑥𝑛+1)

(𝑥𝑖 − 𝑥1). . . (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1). . . (𝑥𝑖 − 𝑥𝑛+1)
𝑦𝑖

𝑛+1

𝑖=1

 

where 1 ≤ 𝑖 ≤ 𝑛 + 1 𝑎𝑛𝑑 𝑃(𝑥𝑖) = 𝑦𝑖 (Brilliant, 2019) 

Needless to say, the higher the degree of the polynomial chosen, the more accurately the egg 

can be modelled. However, some preliminary testing showed that only one second, third, or 

fourth degree polynomial is not a decent fit for the egg (top half) in its entirety. This makes 

sense as the curvature of the egg is different from that of the nature of a quadratic or cubic or 

a quartic. We could, of course, try using higher degrees such as fifth or sixth degrees, although 

that would result in complicated polynomials that are unnecessarily long and would be time 

consuming to expand and simplify. As such, it could be helpful to divide the egg into three 

sections: left, middle and right, where each section can be modelled using a separate 

polynomial. I have chosen to simply use quadratic equations; in which case I will need three 

data points for each section. The Lagrange interpolation formula for a quadratic (𝑛 = 2, 𝑖 = 3) 

is then written as: 
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𝑄(𝑥) =
(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
𝑦1 +

(𝑥 − 𝑥1)(𝑥 − 𝑥3)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)
𝑦2 +

(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
𝑦3 (8) 

 

Using three randomly chosen co-ordinates from the ‘left’ section of the egg (given in Table 1), 

we can therefore find the quadratic equation, 𝑄𝑙(𝑥), to be: 

𝑄𝑙(𝑥) =
(𝑥 − 0.25)(𝑥 − 0.512)

(0 − 0.25)(0 − 0.512)
(0.01) +

𝑥(𝑥 − 0.512)

(0.25)(0.25 − 0.512)
(0.886) +

𝑥(𝑥 − 0.25)

(0.512)(0.512 − 0.25)
(1.283) 

≈ −3.884244𝑥2 + 4.475061𝑥 + 0.01 (6 𝑑. 𝑝. ) 

Note that the equation above was not simplified by expanding the linear expressions and 

summing them, as that would have been tedious and time consuming; rather, I inputted (8) into 

WolframAlpha to simplify the equation to a quadratic in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where: 

𝑎 =
𝑦1

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
+

𝑦2
(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)

+
𝑦3

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
 

𝑏 = −
𝑥3𝑦1

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
−

𝑥2𝑦1
(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)

−
𝑥3𝑦2

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)

−
𝑥1𝑦2

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)
−

𝑥2𝑦3
(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

−
𝑥1𝑦3

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
 

𝑐 =
𝑥2𝑥3𝑦1

(𝑥1−𝑥2)(𝑥1−𝑥3)
+

𝑥1𝑥3𝑦2
(𝑥2−𝑥1)(𝑥2−𝑥3)

+
𝑥2𝑥3𝑦1

(𝑥3−𝑥1)(𝑥3−𝑥2)
 

I then simply inputted the expressions above and the co-ordinates’ values from the tables to 

calculate the quadratic coefficients using Desmos.  
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Repeating this procedure, I obtained the equations for the middle section, 𝑄𝑚(𝑥), and the right 

section, 𝑄𝑟(𝑥), using the data from Tables 2 and 3 respectively. To six decimal places, the 

functions are given as follows: 

𝑄𝑚(𝑥) = −0.190278𝑥
2 + 0.981862𝑥 + 0.835266 

𝑄𝑟(𝑥) = −3.431960𝑥
2 + 32.799862𝑥 − 77.237990 

The three functions were then graphed using Desmos, as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we can restrict the domains of each function and reflect them in the 𝑥-axis to obtain a 

final piecewise relation modelling the egg: 

𝑓(𝑥) = {

±(−3.884244𝑥2 + 4.475061𝑥 + 0.01)                   0 ≤ 𝑥 ≤ 0.512

±(−0.190278𝑥2 + 0.981862𝑥 + 0.835266)          0.512 ≤ 𝑥 ≤ 4.856

±(−3.431960𝑥2 + 32.799862𝑥 − 77.237990)     4.856 ≤ 𝑥 ≤ 5.35

(9) 

Note: (9) is considered a relation and not a function since there are two different outputs for 

each input, and therefore does not agree with the definition of a function, which requires only 

Figure 5: Three quadratic functions modelling the left, middle and right sections of the 

egg, and the data points used to obtain these functions. 

𝑄𝑚(𝑥) = −0.190278𝑥
2 + 0.981862𝑥 + 0.835266 

𝑄𝑟(𝑥) = −3.431960𝑥
2 + 32.799862𝑥 − 77.237990 𝑄𝑙(𝑥) = −3.884244𝑥

2 + 4.475061𝑥 + 0.01  
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one output for each input. Looking at Figure 6, the piecewise relation seems to be an almost 

excellent model for the egg as it nearly overlaps with the outline of the egg perfectly; although 

the curvature seems to be one aspect which is lacking as the transitions between the quadratic 

functions at the different sections seem to be ‘awkward’ rather than smooth, i.e. it can easily 

be deduced that (9) is a piecewise relation solely from looking at the graph. Furthermore, the 

assumption that the egg is symmetrical about the x-axis seems to be true through observing the 

graph below and above the 𝑥-axis, although it cannot be asserted that the egg is perfectly 

symmetrical. In order to achieve better accuracy, the Lagrange interpolation formula could 

have been applied for the bottom half too, but that would be unnecessary and time consuming 

merely for a minute increase in the level of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

Reflecting upon this method, it might have seemed somewhat unnecessary using the Lagrange 

interpolation formula to merely find the coefficients of quadratic equations. Perhaps, it could 

have been more efficient to construct three simultaneous equations with the unknown 

Figure 6: Graphical representation of the piecewise relation (9).  
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coefficients 𝑎, 𝑏, and 𝑐, and then perform Gaussian elimination to find their values, which 

would have resulted in the same values obtained from the Lagrange formula. Originally, this 

formula was introduced with the aim of finding one higher-order polynomial that would model 

the whole egg (which would have been difficult to do using other methods); however, the 

inability to do so alluded to dividing the egg into three quadratic sections, in which case the 

Lagrange formula would have not been necessary to do so. Although this method is unique and 

accurate, other methods could have been used to simplify the calculation process.    

 

2.3 Comparing the Methods 

Perhaps the most notable difference between the two methods is that method A is more general 

than method B, as it can be easily applied to any unique egg possessing the same general shape, 

given the axes-intercepts of the egg. Method B on the other hand is more specific in the sense 

that many separate, different polynomial functions will be needed to model the egg. Although 

the second model seems to be a more accurate fit than the first (through comparing Figure 4 

with Figure 6), the first model could be considered superior due to its higher generalizability; 

not to mention that its graph is continuous and appears to be smoother. As such, the model 

obtained from the first method, (7), will be used in upcoming calculations for the volume and 

surface area. That being said, each model is unique and has its own pros and cons. 

 

3. CALCULATING THE VOLUME 

In HL math, we learnt that the volume of the solid generated by revolving a 2D function, 𝑓(𝑦), 

rotated 2𝜋 degrees about the 𝑦-axis is given by evaluating the following integral between two 

desired limits: 

𝜋∫[𝑓(𝑦)]2 𝑑𝑦

𝑏

𝑎

, (10) 
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where 𝑎 and 𝑏 are the lower and upper limits respectively. Re-arranging (7) to make 𝑥2 the 

subject, we obtain: 

𝑥2 = 4.41(1 −
𝑦2

7.04 + 𝑦
) (11) 

We can therefore find the volume of the egg by applying (10), with the limits as the 𝑦-intercepts 

given in Figure 4: 

𝑉 = 4.41𝜋 ∫ 1 −
𝑦2

7.04 + 𝑦
𝑑𝑦

3.2

−2.2

(12) 

In order to help evaluating this integral, we can use a substitution as follows: 

𝑢 = 7.04 + 𝑦 (13) 

∴ 𝑑𝑢 = 𝑑𝑦 

This allows us to re-write (12) as follows: 

𝑉 = 4.41𝜋 ∫ 1 −
(𝑢 − 7.04)2

𝑢
𝑑𝑢

𝑦=3.2

𝑦=−2.2

 

Expressing the 𝑦 limits as 𝑢 limits using (13) and simplifying the integrand, we get: 

𝑉 = 4.41𝜋 ∫ 15.08 − 𝑢 −
49.5616

𝑢
𝑑𝑢

10.24

4.84

 

Applying the rules of integration: 

𝑉 = 4.41𝜋 [15.08𝑢 −
1

2
𝑢2 − 49.5616 ln|𝑢|]

4.84

10.24

 

= 4.41𝜋(−13.3048303505 + 16.8800166229) 

≈ 49.5𝑐𝑚3 (3 𝑠. 𝑓. ) 
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4. CALCULATING THE SURFACE AREA 

As with the volume, it is possible to calculate the surface area of the solid generated by rotating 

the function 𝑓(𝑦) about the 𝑦-axis, according to the following formula: 

𝐴 = 2𝜋∫𝑓(𝑦)√1+ [𝑓′(𝑦)]2 𝑑𝑦

𝑏

𝑎

(14) 

(Weisstein, 2019) 

Solving for the positive solution of 𝑥 in (11): 

𝑥 = 2.1√1−
𝑦2

7.04 + 𝑦
(15) 

We can therefore compute the derivative 
𝑑𝑥

𝑑𝑦
 by using the chain rule for the square root function 

followed by using the quotient rule for the term 
𝑦2

7.04+𝑦
: 

𝑑𝑥

𝑑𝑦
= 2.1 × 0.5

(

 
1

√1 −
𝑦2

7.04 + 𝑦)

 (−
2𝑦(7.04 + 𝑦) − 𝑦2

(7.04 + 𝑦)2
) 

=
−1.05(𝑦2 + 14.08𝑦)

(7.04 + 𝑦)2√1 −
𝑦2

7.04 + 𝑦

(16)
 

We can now use (14) to find the formula for the surface area, where 𝑓(𝑦) is given by (15), and 

𝑓′(𝑦) is given by (16): 

𝐴 = 4.2𝜋 ∫ √1 −
𝑦2

7.04 + 𝑦
⋅ √1 +

(

 
−1.05(𝑦2 + 14.08𝑦)

(7.04 + 𝑦)2√1−
𝑦2

7.04 + 𝑦)

 

2

𝑑𝑦

3.2

−2.2

 

A GDC was used to find the value of this integral, giving: 

𝐴 = 4.2𝜋 × 5.014879127 

≈ 66.2 𝑐𝑚2 (3 𝑠. 𝑓. ) 
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5. DISCUSSION 

Since these calculated values of volume and surface area are likely to be overestimates (because 

the calculations were based on the model from Figure 4, which contained minor flaws as 

aforementioned), it may be worth finding a method to validate these values. This would also 

help in ensuring that the mathematics was correct. Conducting a displacement test would not 

have been a good solution as that would only provide a value for the volume, not to mention 

that it lacks precision. Upon researching, I found a seemingly highly accurate model by Nobuo 

Yamamoto (2007) which has a rigorous proof beyond the scope of this paper, as follows:  

(𝑥2 + 𝑦2)2 = 𝑎𝑥3 + (𝑎 − 𝑏)𝑥𝑦2, (17)

𝑤ℎ𝑒𝑟𝑒 𝑎 ≥ 𝑏 ≥ 0
 

𝑎 and 𝑏 being parameters which change the shape of the egg curve. Using Desmos, I found 

their values which best fit my egg, as shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that the equation is a very accurate model of the egg and therefore we can be 

certain in the values obtained from the calculations. According to Yamamoto, the volume of 

revolution using this model can be calculated as: 

(𝑥2 + 𝑦2)2 = 5.33𝑥3 + 2.62𝑥𝑦2 

Figure 7: Nobuo Yamamoto equation for my egg; 𝑎 = 5.33, 𝑏 = 2.71  
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𝑉 =
𝜋

2
(
𝑎

6𝑏
(𝑎 + 𝑏)3 +

1

60𝑏2
((𝑎 − 𝑏)5 − (𝑎 + 𝑏)5) −

𝑎3

6
−
𝑎2𝑏

2
) 

Substituting the values of 𝑎 and 𝑏, we get 𝑉 = 48.2 𝑐𝑚3 (3 𝑠. 𝑓. ). This is close to my 

calculated value of 49.5𝑐𝑚3, which is reassuring. Similarly, the surface area could be 

calculated using (14), where the functions 𝑓(𝑥) and 𝑓′(𝑥) are given by Yamamoto in his paper 

and not included here for conciseness:  

𝐴 = 2𝜋 ∫ 𝑓(𝑥) +

5.33

0

√1 + [𝑓′(𝑥)]2 𝑑𝑥 

𝐴 = 64.7𝑐𝑚2 

Again, my value, 66.2𝑐𝑚2, is faithful to the ‘true’ value calculated above. As expected, my 

values for the volume and surface area were slightly higher than the true ones, highlighting the 

flaw within my model. The percentage errors for the volume and surface area were calculated 

as 2.7% and 2.3% (1 𝑑. 𝑝. ) respectively, which are negligible. Therefore, we can conclude that 

these values are quite accurate.  

 

6. CONCLUSION 

I was gratified to be able to tie in different areas of mathematics such as algebra, functions and 

calculus and use them in conjunction to achieve the aim of my exploration; modelling an egg 

and finding its volume and surface area. To three significant figures, the volume and surface 

area were calculated to be 49.5𝑐𝑚3 and 66.2 𝑐𝑚2 respectively, and those only strayed 

minimally from the true values; the reason for this mostly being the flaw within the model 

itself. Perhaps, the accuracy of my models could have been statistically calculated by 

comparing the model values with precise points on the egg, which could have resulted in a 

more mathematical comparison between the two models. It is also important to be mindful of 

the fact that the exploration was subject to human error, for example, there was an uncertainty 
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when measuring the length of the egg, which could have altered the values obtained from the 

calculations. For further investigations, it could be intriguing to use a number of different eggs 

and model them to determine a more generic and accurate model. Additionally, it could be 

worth investigating if there is a mathematical relationship between the length of an egg and its 

volume and/or surface area, possibly leading to some interesting mathematics involving 

statistical analyses of correlation coefficients. 
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